organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Janusz Serwatowski,* Tomasz Klis and Kinga Kacprzak

Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3, 00-664 Warsaw, Poland

Correspondence e-mail: ktom@ch.pw.edu.pl

Key indicators

Single-crystal X-ray study T = 100 KMean $\sigma(\text{C-C}) = 0.008 \text{ Å}$ R factor = 0.049 wR factor = 0.113Data-to-parameter ratio = 13.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

3-Bromo-2-(2-fluorobenzyloxy)phenylboronic acid

The title compound, $C_{13}H_{11}BBrFO_3$, exists as an almost centrosymmetric dimer of two crystallographically independent molecules linked by hydrogen bonds. The $B(OH)_2$ groups are slightly twisted from the plane of the benzene ring. There are intra- and intermolecular hydrogen bonds.

Comment

Arylboronic acids $ArB(OH)_2$ are important starting materials in organic synthesis. They are valuable substrates in the formation of biaryls (Miyaura & Suzuki, 1995) or amino acids (Petasis *et al.*, 1997). The modern application of these compounds concerns the analysis of natural products such as carbohydrates (Samankumara Sandanayake & Shinkai, 1994) or hormones and saccharide transport through membrane cells (Bien *et al.*, 1995). Hence, the formation of the hydrogen bonds is important in order to understand the activity of these compound as receptors. The structure of boronic acids containing a benzyloxy group has not been published to date. The aim of this work was to investigate the influence of the F atom in the benzylic part of the molecule on the dihydroxyboryl group.

The title compound, (I), having two molecules per asymmetric unit, contains a $B(OH)_2$ group *ortho* to oxygen and an F atom *ortho* to the benzyl aliphatic C atom. Therefore, we

Figure 1 ^O ^{Ilography} View of the two independent molecules of (I), showing the atom-labelling

© 2006 International Union of Crystallography All rights reserved

scheme. Displacement ellipsoids are drawn at the 50% probability level.

Received 24 February 2006 Accepted 2 March 2006 expected the possible participation of the F atom in the hydrogen-bond formation. The B(OH)₂ group is twisted by 4.8 (8) and -5.2 (8)° from the plane of the benzene ring in the two independent molecules. The intermolecular hydrogen bonds (Table 2) are longer than the value of 2.745 Å reported for 4-toluyloboronic acid (Zheng et al., 2001).

Experimental

The title compound was purchased from Aldrich and was recrystallized from toluene and dried in air.

H-atom parameters constrained

where $P = (F_0^2 + 2F_c^2)/3$

 $w = 1/[\sigma^2(F_o^2) + (0.05P)^2]$

 $(\Delta/\sigma)_{\rm max} = 0.014$

 $\Delta \rho_{\rm max} = 1.66 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

Crystal data

C ₁₃ H ₁₁ BBrFO ₃	Z = 4
$M_r = 324.94$	$D_x = 1.678 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 4.0226 (5) Å	Cell parameters from 10000
b = 15.278 (2) Å	reflections
c = 21.685 (3) Å	$\theta = 1.5 - 29.7^{\circ}$
$\alpha = 105.084 \ (11)^{\circ}$	$\mu = 3.21 \text{ mm}^{-1}$
$\beta = 90.026 \ (10)^{\circ}$	T = 100 (2) K
$\gamma = 92.089 \ (11)^{\circ}$	Needle, colourless
V = 1285.9 (3) Å ³	$0.53 \times 0.07 \times 0.05 \text{ mm}$

Data collection

Oxford Diffraction KM-4-CCD	4521 independent reflections
diffractometer	2963 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.076$
Absorption correction: numerical	$\theta_{\rm max} = 25.0^{\circ}$
(CrysAlis RED; Oxford	$h = -4 \rightarrow 4$
Diffraction, 2001)	$k = -18 \rightarrow 18$
$T_{\min} = 0.522, \ T_{\max} = 0.857$	$l = -25 \rightarrow 25$
13268 measured reflections	

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.113$ S = 0.924521 reflections 347 parameters

Table 1

Selected geometric parameters (Å, °).

1.906 (6)	O3′-C7′	1.471 (6)
1.897 (5)	C5-C6	1.401 (7)
1.381 (6)	C5-B1	1.579 (8)
1.353 (6)	C7-C8	1.499 (7)
1.346 (7)	C8-C13	1.386 (7)
1.375 (7)	C5′-C6′	1.397 (7)
1.394 (6)	C5'-B1'	1.575 (8)
1.461 (6)	C7′-C8′	1.487 (7)
1.359 (7)	C8′-C13′	1.377 (7)
1.403 (6)		
113.0 (4)	C6'-C5'-B1'	123.7 (5)
112.5 (4)	C5'-C6'-O3'	119.7 (4)
124.9 (5)	O3′-C7′-C8′	108.0 (4)
119.9 (4)	F1'-C13'-C8'	117.7 (5)
108.1 (4)	O1-B1-O2	119.4 (5)
117.1 (5)	O1'-B1'-O2'	120.1 (5)
4.7 (8)	C6'-O3'-C7'-C8'	-170.8(4)
-164.3(4)	C7'-C8'-C13'-F1'	2.7 (8)
2.1 (8)	C6-C5-B1-O2	-6.8(9)
-5.4 (8)	C6' - C5' - B1' - O2'	-1.3 (9)
	$\begin{array}{c} 1.906\ (6)\\ 1.897\ (5)\\ 1.381\ (6)\\ 1.353\ (6)\\ 1.346\ (7)\\ 1.375\ (7)\\ 1.394\ (6)\\ 1.461\ (6)\\ 1.359\ (7)\\ 1.403\ (6)\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Figure 2 Intra- and intermolecular hydrogen bonds (dashed lines) in (I).

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H10 \cdots 02^{i}$ $02 - H20 \cdots 03$ $02 - H20 \cdots F1$ $01' - H10' \cdots 02'^{ii}$ $02' - H20' \cdots 03'$ $02' - H20' \cdots F1'$	0.84 0.84 0.84 0.84 0.84 0.84	1.97 2.11 2.33 1.97 2.03 2.59	2.803 (5) 2.830 (5) 2.895 (5) 2.800 (5) 2.764 (5) 3.057 (5)	172 143 125 172 146 116
			. ,	

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 2, -z + 1.

Most of the H atoms were located in a difference map. They were refined with fixed individual displacement parameters $[U_{iso}(H) =$ $1.2U_{eq}(C,O)$] using a riding model, with C-H = 0.95 Å and O-H = 0.84 Å. In addition, the torsion angles of the hydroxyl groups were refined. The maximum electron-density peak in the final difference map is 1.18 Å from atom Br1.

Data collection: CrysAlis CCD (Oxford Diffraction, 2001); cell refinement: CrysAlis RED (Oxford Diffraction, 2001); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The support of the Aldrich Chemical Co. Inc., Milwaukee, Wisconsin, USA, through the donation of chemicals and equipment, is gratefully acknowledged. The X-ray measurements were undertaken in the Crystallographic Unit of the Physical Chemistry Laboratory at the Chemistry Department of the University of Warsaw.

References

- Bien, J. T., Shang, M. & Smith, B. D. (1995). J. Org. Chem. 60, 2147-2152.
- Brandenburg, K. (1999). DIAMOND. Version 2.1c. Crystal Impact GbR, Bonn, Germany,
- Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
- Oxford Diffraction (2001). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Poland, Wrocław, Poland.
- Petasis, N., A., Goodman, A. & Zavialov, I. A. (1997). Tetrahedron, 53, 16463-16470.
- Samankumara Sandanayake, K. R. A. & Shinkai, S. (1994). J. Chem. Soc. Chem. Commun. pp. 1083-1084.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
- Zheng, C., Spielvogel, B. F. & Hosmane, N. S. (2001). Z. Kristallogr. New Cryst. Struct. 216, 341-342.